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The Epsilon method is designed to linearly interpolate between the
data in the previous and current time increment. We then partition

Abstract Closest Previous Means (CPM)

Algorithm 2 Closest Previous Means

Clustering is an unsupervised learning technique used to group data 1+ G oose a fixed mumber of clusters this interpolation an epsilon number of times, running K-Means at
p0|nts based oNn some measure Of Slm”a”ty Algorlthms SUCh as K- ; gi;n’coi;:ea{i:t?t:EiiE;ag;iuit#??nigcel;zcdii;iine seTriEE eaCh partltlon Step IN COmparISOH to C|OS€St Previous MeanS, the
Means and H|erarchlca| Cluste”ng are deSlgned to Operate oNn one 5: Compute K-Means on X, with random initial ce’ntroids > See Algorithm 1 randOm |n|t|al|zat|0n Step IS replaced W|th the aCtuaI |OCatIOn Of the
. . . : Se Lseees Ui b = {01, ..., € } computed by K-Means algorithm I I I I I
dataset New Cha”enges arise When eXtendlng CIUSte”ng mOdels to 2 Snit{fﬁlf{;:}t b;{ numbet}nf datI:t ﬁﬂintgin each clustfr b; ascending order - Ascending for stability purposes CentrOId Of the pl’eVIOUS Step InStead Of ChOOS'ﬂg the data pOInt
incorporate a time series. Two models, Closest Previous Means and i N - indicntes sorted 1 closest in the current period closest to it.
EpS”on methOd, are proposed 11{0) a”eV|ate some Of |Ssues found |n 10: gnmpute d;ta, point z € X, closest to fi; where x has not already been chosen by a different j | .
. . 11: et centroid ¢; = x
recursive K-Means clustering methods. 122 end for i
13: Compute K-Means on X; with initial centroids {ei, ..., cx } > See Algorithm 1 1 “ |
14: Set {1, ey i e = {1, ..., € } computed by K-Means algorithm \/\\
] 15: Sort {p1, ..., pix }; by number of data points in each cluster by ascending order 2 2 X
Standard K-Means Clustering 16: end for
.. . : N N\
Algorithm T K-Means Algorithm (1) _Thg main iIdea of Closest Previous I\/quns IS to replace_ the random \ o
1: Choose a distance metric Initialization step of K-Means by selecting the data point closest to \\ = e
2: Choose a dataset X . . . . ke
3: Choose k initial centroids C = {¢;, ..., ¢t } randomly from X © Unless given initial centroids by Algorithm 2, 3 each of the means from the preVIOUS pe”Od. By d0|ng this we 1 4'
4 fori€{l,...k} do o | o | eliminate the need for cluster labeling since we are directly using the -/
5: Set cluster C; to be the set of all points in X closer to ¢; that other centroids ci VJ # i by distance metric . . . L *1 -+
6: Set ¢; to be the center of mass for all points in C; where ¢; = T!‘TLT Dozec: T |abe|S from the pl‘eVIOUS perIOd N a determInIStIC Way. The beSt Way p " > .
7. end for " ‘i " "
. to reduce variance and promote model stability is to give the
8: Repeat steps 3-6 until C no longer changes _ _ _ _ _ _ _
centroids with the fewest data points in the previous period the first Advantages of CPM over Epsilon Method

| | oriority in choosing its closest data point. Much faster to run since K-Means Is only required to run once at
Clusters computed by standard recursive K-Means clustering each time increment
techniques are highly dependent on the random initialization step at | | « Designed with a focus to model a purely spatial relationship
each time increment, resulting in unstable clustering behaviors and between clusters
difficulty in labeling clusters over different time increments. | | * Model designed to work on datasets with missing data, while the

Epsilon Method runs into issues if data cannot be linearly
. Interpolated
Model Advantages comparing to Standard K-Means =N
| -1 R ul TSN Advantages of Epsilon Method over CPM
* ITthe data dogs not change over time, then the clusters e Interpolating will capture a unique relationship between the funds
themselves will not change o Ao = over time; Closest Previous Means will just see data points as
* Both methods are deterministic after the first time increment, : Gimer | - | e data points and cluster a spatial relationship
significantly reducing the effects of random noise on the Epsilon Method - Generally has smaller cluster variance since outlier clusters do

clustering results

. . . not have the chance of a having their closest data points taken by
« No chance of mislabeling clusters as the labels are directly pulled Algorithm 3 Epsilon Method

another cluster

from the previous time period : Ghoom e f e e €5
° 12t I . . . :;Settimef=l
Reduces the variation in cluster movement over time resulting in s Settmet=1 o Future Work
more stable and reliable results s: Choose a time series data set X indexed by t,..., T
6: Compute K-Means on X; with random initial centroids = See Algorithm 1
Challenges pfort=to.Tdo » Find a way to fix missing value problem in Epsilon Method that
g 13 fﬂrli’jn?;;;::hé;ﬂ:}gﬁe then = Boolean whet; I'?‘::Eﬁltleeigdt;:?th;i'_ait{ieain::tt'i;::l:j WI” Work for a” tlme Serles data sets
_ _ _ 1L forp=1.. ffu[X X T * Implement ways to speed up runtimes of algorithms, especially
i : - . 9 nterpolation Step ) : . .
K Means SEIVES as the baSIS Of CloseSt PreVIOUS Means and EpS”O” 13: Compute K-Means on X with initial centroids as means from p — 1 step the EpS'IOﬂ MethOd since It Is mUCh maore COmputa'[IOI’]a”y
methOdS When maklng mOdlflcatlonS to K-Means, there are two 14 if any clusters have () data points or any centroids overlap then - -
. 15: Break > Then ¢ partitions fails — try € + 1 partitions Intensive
Important rules to follow: 16: end if '
17: if p=¢ then
. _ . 18: S?t endreached = True = Model successfully clustered X; with ¢ partitions Referen C e S
« Each centroid must have at least one data point closest to it o ond it
throughout each step of iteration 2 end if . . e 1
J P 222 end for 1) Arthur, David, and Sergei Vassilvitskii. K-Means++: The

* The centroids (means) can never share the same location in
space of another centroid

23: end for

Advantages of Careful-Seeding-Stanford-University.
https://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf.
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